Nonlinear Bayesian Filters for Training Recurrent Neural Networks
نویسندگان
چکیده
In this paper, we present nonlinear Bayesian filters for training recurrent neural networks with a special emphasis on a novel, more accurate, derivative-free member of the approximate Bayesian filter family called the cubature Kalman filter. We discuss the theory of Bayesian filters, which is rooted in the state-space modeling of the dynamic system in question and the linear estimation principle. For improved numerical stability and optimal performance during training period, a number of techniques of how to tune Bayesian filters is suggested. We compare the predictability of various Bayesian filter-trained recurrent neural networks using a chaotic time-series. From the empirical results, we conclude that the performance may be greatly improved by the new square-root cubature Kalman filter.
منابع مشابه
Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملAn algorithmic approach to adaptive state filtering using recurrent neural networks
Practical algorithms are presented for adaptive state filtering in nonlinear dynamic systems when the state equations are unknown. The state equations are constructively approximated using neural networks. The algorithms presented are based on the two-step prediction-update approach of the Kalman filter. The proposed algorithms make minimal assumptions regarding the underlying nonlinear dynamic...
متن کاملPrediction of Dynamical Systems by Recurrent Neural Networks
Recurrent neural networks in general achieve better results in prediction of time series then feedforward networks. Echo state neural networks seem to be one alternative to them. I have shown on the task of text correction, that they achieve slightly better results compared to already known method based on Markov model. The major part of this work is focused on alternatives to recurrent neural ...
متن کاملData-Reusing Recurrent Neural Adaptive Filters
A class of data-reusing learning algorithms for real-time recurrent neural networks (RNNs) is analyzed. The analysis is undertaken for a general sigmoid nonlinear activation function of a neuron for the real time recurrent learning training algorithm. Error bounds and convergence conditions for such data-reusing algorithms are provided for both contractive and expansive activation functions. Th...
متن کاملComplex Extended Kalman Filters for Training Recurrent Neural Network Channel Equalizers
The Kalman filter was named after Rudolph E. Kalman published in 1960 his famous paper (Kalman, 1960) describing a recursive solution to the discrete-data linear filtering problem. There are several tutorial papers and books dealing with the subject for a great variety of applications in many areas from engineering to finance (Grewal & Andrews, 2001; Sorenson, 1970; Haykin, 2001; Bar-Shalom & L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008